

DEPARTMENT OF ENERGY OFFICE OF FOSSIL ENERGY FEDERAL ENERGY TECHNOLOGY CENTER

CONTACT POINTS

Joseph S. Mei**

ADMINISTRATIVE:

R. Diane Manilla** Technology Transfer

Office: (304) 285-4086

E-Mail: rmanil@fetc.doe.gov

E-Mail: wildman@fetc.doe.gov

Program Manager

David Wildman*

Technical Advisor

Senior Management

Office: (412) 892-4913

Mechanical Engineer

Office: (304) 285-4409

E-Mail: jmei@fetc.doe.gov

TECHNICAL:

COLD-FLOW CIRCULATING FLUID-BED UNIT

Capabilities

A cold model operated at FETC is a flexible and versatile facility. Optimization of novel coal fluidized-bed reactors require that we solve a variety of solid transfer issues. These issues are encountered in both integrated gasification combined-cycle (IGCC) and advanced pressurized fluidized-bed combustion (APFBC) power trains. Tools are needed to visualize solids flow systems and explore possible solutions to problems. The project team's objective is to provide support to circulating fluid-bed (CFB) systems through analysis of existing plants, optimization of plant operations, and evaluation of new designs.

The cold-flow unit is capable of simulating fully integrated operations for solids transfer and control systems as is common to many advanced coal-fired power systems. or design and construction of six CFB process plants.

Elevation drawing of cold flow unit

Currently, DOE is providing financial support for operations The cold-flow unit consists of a riser, a two-stage cyclone, and a standpipe, and will shortly include a 2-ft diameter fluidized bed (FB) with an associated cyclone

and make-up hopper. Transport lines will connect these vessels in a variety of configurations with mechanical and non-mechanical solids control valves. The main riser is 1 ft diameter, 56 ft high, and consists of metal and acrylic spool pieces. The facility will have a supply of 250,000 scfh air with the ability to obtain superficial velocities of 10 to 30 ft/s in the riser, and 0.2 to 0.7 ft/s in the FB. The operating pressures will range from 0 to 15 psig at the riser outlet and up to 30 psig in the FB.

MAIL ADDRESS:

- U.S. Department of Energy P.O. Box 10940 626 Cochrans Mill Road Pittsburgh, PA 15236-0940
- ** U.S. Department of Energy P.O. Box 880 3610 Collins Ferry Rd. Morgantown, WV 26507-0880

Simplified process flow diagram for the cold flow circulating fluid-bed test facility

Screening tests with both acrylic and polyvinyl chloride particles have been conducted using a 45-angle inclined J-valve. The CFB operating regime was mapped using a composite test matrix of 30 setpoints to allow statistical evaluation of process variations. Experimental data on solids circulation was collected using 4 independent measurement techniques: visual particle tracking, rotation of an internal spiral mechanism, cross correlation of two high-speed pressure differential sensors in series axially along the riser, and a laser optical sensing device developed at FETC. Construction of the FB unit and associated transfer lines should be completed by the end of 1998.

COLD-FLOW CIRCULATING FLUID-BED UNIT

Pressure profiles and operating conditions achievable in the cold flow test facility

Non-mechanical valve configurations to be tested

Opportunities

The cold-flow circulating fluid-bed unit provides the following opportunities:

- A user's test facility for private industry to test specific component designs and configurations.
- Better understanding of operational principles of gas-solid transfer and control among reactor vessels.
- Data to verify the mathematical models; use these data to develop stochastic and engineering models.
- Design and scale-up data of gas-solid transfer devices.
- A platform to develop and test instrumentation and novel non-mechanical valves, down-comers, and other devices.
- A training simulator for plant operating personnel.

	TASK NAME		1998									1999			
ID		APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	
1	J-Valve Tests			T		,									
4	Instrumentation														
9	Solids Velocity Probe	Ţ													
5	Mass Circulation Rates		Ţ												
12	Solids Density	7													
15	L-Valve Tests														
26	NOx SO TestsTest									7					
18	Control Strategies		Ţ							7					
28	Phase II Construction FW Design									7					
22	MW Kellogg CRADA				_										
37	Shakedown Phase II								4						
40	Operation N-Valve											_			

M98001041 C7

Schedule for design, construction, and operation of the cold flow CFB test facility